
DSASSASSIN: Cross-VM Side-Channel Attacks
by Exploiting Intel Data Streaming Accelerator

Ben Chen1, Kunlin Li1, Shuwen Deng2, Dongsheng Wang2, Yun Chen1*

February 4, 2026

32th International Symposium on High-Performance
Computer Architecture (HPCA ’26)

1 The Hong Kong University of Science and Technology (Guangzhou)
2 Tsinghua University

Data Movement

Data centers tax for moving data between buffers
§ Dedicated accelerator to save CPU cycles and boost throughput

More devices potentially brings wider attack surfaces
§ Example: IOTLB side channels DevIOus [S&P‘23] and GPU TLBs [CCS’23]

February 4, 2026

offload
memcpy

Intel Data Streaming Accelerator (DSA)

Tile

Tile

Tile

Tile

Tile

Tile DSA

PCIe

M
em

ory

CPU Socket

TA

ATC

ATC / DevTLB

TA

Work Queues
(Hardware Queue)

···

Portal

Address translation

M
em

ory

Engines

Page Table Walk

DSA Internal

Memory Read/Write

PCI express

Memory Request

Enqueue

Descriptors from CPU
Process
Space

Engine 3
···

Batch fetcher
& buffer

Fetch translation

Processing
Unit

Arbiter
Work descriptor

Memory Transaction

Engine 0

1

2

3 4

Pipeline
Decode

Read

Compute

Write

Notify

• Introduced in Intel Xeon 4th Gen Scalable and later

• Treated as device w/ Intel VT-d I/O virtualization
• Accelerates data operations such as memcpy, memset, and memcmp
• Introduces asynchronous semantics, saving CPU cycles

February 4, 2026

DSA Descriptor
56 48 40 32 24 16 8 0 Bytes

Opcode Flags P Reserved PASID 0

Completion Record Address 8

Source Address (src) 16

Destination Address (dst) / Source2 Address (src2) 24

Reserved Interrupt Handle Transfer Size 32

Destination2 Address (dst2) 40

Reserved 48

Unused 56

February 4, 2026

§ Descriptor is DSA’s instruction

§ 64 bytes in total (long enough)

§ encodes all necessary information

§ does not expose internal states

56 48 40 32 24 16 8 0 Bytes

Bytes Completed Unused Result Status 0

Fault Address 8

Reserved 16

Unused 24

Fig: Descriptor format

Fig: Completion record format

§ Completion record tracks DSA final
states, e.g. completed or aborted

DSA Workflow

1. User writes descriptor to portal

2. Portal enqueues and dispatches to
engine

3. Engine fetches address translation

4. issues memory requests via PA

5. notifies user by writing
completion record

ATC / DevTLB

TA

Work Queues
(Hardware Queue)

···

Portal

Address translation

M
em

ory

Engines

Page Table Walk

DSA Internal

Memory Read/Write

PCI express

Memory Request

Enqueue

Descriptors from CPU
Process
Space

Engine 3
···

Batch fetcher
& buffer

Fetch translation

Processing
Unit

Arbiter
Work descriptor

Memory Transaction

Engine 0

1

2

3 4

February 4, 2026

DSA Workflow

§ IOMMU => TA (Intel VT-d)
§ Offload translation requests
§ Directly use PA

§ I/O VA => Process VA
§ Same VA space
§ Needless to allocate IOVA
§ PASID to walk process’s page

table

ATC / DevTLB

TA

Work Queues
(Hardware Queue)

···

Portal

Address translation

M
em

ory

Engines

Page Table Walk

DSA Internal

Memory Read/Write

PCI express

Memory Request

Enqueue

Descriptors from CPU
Process
Space

Engine 3
···

Batch fetcher
& buffer

Fetch translation

Processing
Unit

Arbiter
Work descriptor

Memory Transaction

Engine 0

1

2

3 4

February 4, 2026

Micro-arch Side-Channels

February 4, 2026

Speculative
Attacks

§ Spectre
§ PHT, BTB, RSB, etc.

§ Meltdown
§ RIDL, ZombieLoad etc.

§ uarch Optimizations
§ Prefetcher, predictor (LAP/LVP)

CPU
Attacks

§ Caches
§ LLC, weak coherence

§ Port contention (e.g. ALU)
§ Bus contention
§ Buffer (e.g. ROB, scheduler)

Un-core
Attacks

§ Interconnects
§ PCIe, NoC, IOTLB etc.

§ Devices uarch
§ GPU, NPU, NIC etc.
§ This work

Proactive-triggered
Low noise
Single-core
Need cache or other primitives

Non-speculative
Stealthy and hard to patch
Higher noise
Single-core (or required SMT co-location)

Cross-VM
Low noise
Passive-triggered
Required high-accurate timer (mostly)

DSA Is Meant To Be Shared

• Architecturally isolates processes
via PASID
• TA only walks tenant’s memory

space
• SWQ synchronizes descriptor

submissions

• Enables DSA to share seamlessly

• But, is it safe from side-channels?

• Can we attack its microarchitecture,
e.g. DevTLB and SWQ?

ATC / DevTLB

TA

Work Queues
(Hardware Queue)

···

Portal

Address translation

M
em

ory

Engines

Page Table Walk

DSA Internal

Memory Read/Write

PCI express

Memory Request

Enqueue

Descriptors from CPU
Process
Space

Engine 3
···

Batch fetcher
& buffer

Fetch translation

Processing
Unit

Arbiter

Work descriptor

Memory Transaction

Engine 0

1

2

3 4

February 4, 2026

Methodology
• PMU: Perfmon for DSA, supported by Linux perf tool

• Timer: rdtsc, to benchmark the completion latency

• Primitives used to benchmark DevTLB and SWQ
• noop: write to completion record at addr
• memcmp: compare two regions from src and src2
• memcpy: copy src to dst
• dualcast: copy src to dst and dst2

February 4, 2026

Event Name Category Event No. Description

EV_ATC_ALLOC 0x2 0x40 Number of requests to DevTLB

EV_ATC_NO_ALLOC 0x2 0x80
Number of requests not allocated

DevTLB entry

EV_ATC_HIT_PREV 0x2 0x100 Number of DevTLB hits

DevTLB Index Policy

February 4, 2026

// base is 4KB aligned
probe_noop(base);
probe_noop(base + OFFSET);
// probe if base is present
probe_noop(base); // miss

// different pages
assert(PAGE_OF(src0) != PAGE_OF(dst0));
assert(PAGE_OF(src0) != PAGE_OF(src1));
probe_memcpy(src0, dst0);
probe_memcpy(src1, dst0); // 1 hit: src

// src2 == dst
probe_memcmp(src, src2);
probe_memcpy(src, dst); // 1 hit: src

• Preliminary: check page boundary
• Not surprisingly 4KB

• Assume set-associativity
• Immediately evicts base. Weird!
• What if it’s not indexed by VA bits?

• Three addresses on different pages
• Entry of dst0 hits, so src is untouched
• Another entry found!

• What if same address is placed at
different fields in descriptor?

• Hit! So DevTLB is indexed by fields

Benchmark DevTLB Latency

• Poll for completion

• DevTLB hit / miss latency is distinguishable
with the unprivileged timer rdtsc

• ~500 cycles variation

• We can do side-channel

February 4, 2026

void* base = malloc(); base[0] = 0; probe_noop(base); // warm up
for (int i = 0; i < ITERATION; i++) {
 hit[cnt] = time(probe_noop(base)); // record hit latencies
 miss[cnt++] = time(probe_noop(base + OFFSET)); // miss latencies
}

DevTLB Index & Replacement

February 4, 2026

• Two isolated processes:
• attacker casts Prime+Probe
• victim submits descriptor during

attacker’s waiting

• Three configurations
1. same WQ, same engine
2. different WQs, same engine
3. both are separate

// wait
 submit(&desc);
 // wait

prime(&base);
 sleep(N_SECS);
 probe(&base);

Engine 0WQ0

Engine 0WQ0

Engine 0WQ0

WQ1

Engine 1WQ1

!!

!"

!#

Time 1 |
 Time 2 |
 Time 3 |

AttackerVictim

DevTLB Attack

February 4, 2026

void* base = malloc(); base[0] = 0;
probe_noop(base); // attacker
submit(&wq, &desc); // victim
time(probe_noop(base)); // attacker

TA
DevTLB of Engine N

···
M
U
X

VA Tag PASID PT Result PS Valid

0xfdeadbeef attacker 0x00c0de 1 1

0xff01dadd5 stale 0x000034 1 0

0xfdeadbeef stale 0x000012 1 0

Field

DevTLB of Engine 0

···

src

dst

comp

Engine ID

PC § First step: attacker primes
some entries

PCI express to memory

PS: Page Size
PT: Page Translation

DevTLB Attack

February 4, 2026

void* base = malloc(); base[0] = 0;
probe_noop(base); // attacker
submit(&wq, &desc); // victim
time(probe_noop(base)); // attacker

DevTLB of Engine N

···
M
U
X

VA Tag PASID PT Result PS Valid

0xfdeadbeef victim 0x00b100 1 1

0xff01daf12 victim 0x00af10 1 1

0xff01dadd2 victim 0x00add0 1 1

Field

DevTLB of Engine 0

···

src

dst

comp

Engine ID

PC
§ Wait for victim to evict the

entries in DevTLB
§ No PASID to protect the

entries, so E0 and E1 succeed

PCI express to memory

TA

DevTLB Attack

February 4, 2026

void* base = malloc(); base[0] = 0;
probe_noop(base); // attacker
submit(&wq, &desc); // victim
time(probe_noop(base)); // attacker

DevTLB of Engine N

···
M
U
X

VA Tag PASID PT Result PS Valid

0xfdeadbeef attacker 0x00c0de 1 1

0xff01daf12 victim 0x00af10 1 1

0xff01dadd2 victim 0x00add0 1 1

Field

DevTLB of Engine 0

···

src

dst

comp

Engine ID

PC
§ Time the access
§ Longer means the entry was

evicted => victim’s behavior

PCI express to memory

TA

DevTLB Attack

February 4, 2026

void* base = malloc(); base[0] = 0;
probe_noop(base); // attacker
submit(&wq, &desc); // victim
time(probe_noop(base)); // attacker

DevTLB of Engine N

···
M
U
X

VA Tag PASID PT Result PS Valid

0xfdeadbeef victim 0x00b100 1 1

0xff01daf12 victim 0x00af10 1 1

0xff01dadd2 victim 0x00add0 1 1

Field

DevTLB of Engine 0

···

src

dst

comp

Engine ID

PC
§ Engine exclusive: E2 failed to

evict because engine ID split
the entries and the translation
was cached in another entry

PCI express to memory

TA

Shared Work Queue

February 4, 2026

§ Benchmarking submission (enqueue) and completion latencies
§ Completion latency is linear with respect to data transfer size (predictable)
§ Submission is constant-time

SWQ Portal

February 4, 2026

§ Deferable Memory Write (DMWr) is non-posted, waiting for feedback
§ Indicates the submission status by setting the bit ZF
§ SWQ checks size with configured capacity

§ Architecturally visible SWQ status
§ Enables timer-less side-channel: Congest + Probe

MMIO
Portal

Config Reg

WQ Reg

=

Hardware
Work QueueHead Size

EFLAGS
ZF 0 Capacity 16

void congest() {
 enqcmd(wq, &mass_desc);
 for (i = 0; i < SIZE; i++)
 enqcmd(wq, &desc[i]);
}

bool probe() {
 return enqcmd(wq, &desc);
}

DSA uArch Takeaway

February 4, 2026

Work Queues
(Hardware Queue)

···

Portal

Engine 3
···

Batch fetcher
& buffer Processing

Unit
Work descriptor

Engine 0

D
evTLB

Config

Virtual
boundary

WQ Reg

check

=

Arbiter

src
dst
src2
dst2
comp

§ DevTLB is indexed by field types (5 entries) and engine IDs
§ SWQ exposes architectural state and exhibits constant-time behavior
§ Neither of them is PASID-partitioned

Attack Primitives

February 4, 2026

DWQ
Engine 0

DSA

DWQ/SWQ

Engine 1SWQ

Memory

Core
&

RC

Host
OS

TA
 Receiver

Victim

VM1

Attacker

Sender

VM2

Covert
Channel

Side
Channel

§ Isolation: attackers and victims run on
different VM and cannot cross boundary

§ Co-location: mapped to same engine (red
path) or same SWQ (teal path)

§ Target: DSA applications, e.g. DPDK, DTO
(DSA Transparent Offload library)

1

2

3

Attacker

Victim

Step: Prime (DevTLB) / Congest (SWQ)

Step: Leakage via access to DSA

Step: Probe the DevTLB / SWQ

bit = time(probe_noop(base)) > threshold;
bit = submit(&swq0, &desc);

probe_noop(base); // prime DevTLB
for (int i = 0; i < WQ_SIZE; i++)
 submit(&swq0, &desc); // congest SWQ

// ...
bit = submit(&swq0, &desc);
// ...

Attacker

DSASSASSIN: Setup & Attacks
We launched four attacks to showcase the primitives, DSADevTLB & DSASWQ

February 4, 2026

Specification Local Cloud

Provider Self-hosted Alibaba Cloud

Processor Xeon Platinum 8468V Xeon Platinum 8475B

Architecture Sapphire Rapids (4th Gen Xeon Scalable)

OS Ubuntu 24.04 LTS

VMM KVM

I/O Virtualization Intel Scalable IOV Single-Root IOV

DSA Instance DSA (v1.0) * 2 DSA (v1.0) * 6

Covert Channel
1

Website Fingerprinting
2

Both

SSH Keystroke
3

LLM Fingerprinting
4

BothDSADevTLB DSADevTLB

DSASSASSIN: Covert Channel
• A preliminary test to see how fast we can leak

• Victim deliberately sends message to the
attacker under VM isolation

• Protocol:
• eviction or submission means bit ‘1’; otherwise ‘0’
• synchronization by emitting consecutive bit ‘1’s

• Performance:
• DevTLB (top fig.): 17.19 Kbps true cap, 4.63% BER
• SWQ (bottom fig.): 4.02 Kbps true cap, 13.11% BER
• True capacity larger than IOTLB attacks

February 4, 2026

DSASSASSIN: Website Fingerprinting
§ User-space network stack VPP upon DPDK

§ VPP memory interface (memif) accelerates VM networking
§ Example: Calico VPP on Kubernetes

§ memif supports DSA acceleration for memory copying

§ We can spy on this

February 4, 2026

VM1Host

memif

Application(s)

memif

Ke
rn

el
St

ac
k memif

socket DSA

HW Moving

VM2

DSA

spy
Host

App(s)

DSASSASSIN: Website Fingerprinting
§ DevTLB miss => packet transmission

§ Example: unique network fingerprints
when accessing 3 websites

§ LSTM model to classify 15 websites
on Chrome 138.0: 96.5% accuracy

§ Top 100: 87.6% accuracy

February 4, 2026

Fig. Example traces

DSASSASSIN: SSH Keystroke

February 4, 2026

• Victim’s SSH client sends packets upon key pressed
• buffer copying involved => DTO acceleration

• Attacker can try to learn the exact timing of victim’s keystrokes
• Periodically priming DevTLB or congesting SWQ
• Shouldn’t miss any keystrokes (F1 score) or deviate too much (std)
• DevTLB: 92.0%, 5.29 ms; SWQ: 98.4%, 1.21 ms

s s h ␣ r o o t
s s h␣ r o o t connection

closed

DSASSASSIN: LLM Fingerprinting

• Lots of data movement in CPU-only
and CPU-GPU inference, e.g. weights
and activation values
• May need DSA to accelerate
• Example: LILo [HPCA’26] applies

Intel IAA, DSA’s sibling

• Side-channel traces to classify the
model’s architecture

• We can achieve 98.6% accuracy on
these 8 models

February 4, 2026

Table. Tested models

Noise Analysis

February 4, 2026

§ Redo latency benchmarks on multiple setups
§ Virtualization and PCIe stress
§ Clear impact but still distinguishable

§ Attack performance remains
§ Noises outside DSA may not affect the

attack effectiveness

Mitigation

February 4, 2026

Software Side-Channel Resistance
e.g. Constant-time, data-oblivious execution

Constantine [CCS’21]: 16% overhead

Enforcing PASID Isolation
e.g. DevTLB partition

Secure TLBs [ISCA’19]: 11.4% overhead

Our software simulation of DSA’s
DevTLB partition via flushing

Up to 15.7% throughput overhead
- Still outperforms CPU’s memcpy

1 2

3

Conclusion
§ We studied Intel DSA and reverse-engineered its microarchitecture

§ DevTLB is indexed by field type and engine ID, and
§ mitigates address translation latency
§ SWQ exposes a timer-less architectural status via DMWr transaction
§ Both are NOT ISOLATED

§ We proposed DSASSASSIN, new side-channel attack that
§ bypasses IOMMU
§ can cross VM boundary and is practical in cloud

§ We demonstrated the threats by spying on DSA applications
§ Fingerprinting (websites & LLM inference) / Keystroke / Covert Channel

February 4, 2026

DSASSASSIN: Cross-VM Side-Channel Attacks by Exploiting Intel Data Streaming Accelerator
Ben Chen, Kunlin Li, Shuwen Deng, Dongsheng Wang and Yun Chen. HPCA ‘26.

February 4, 2026

Thanks for your attention!
Questions?

