32th International Symposium on High-Performance O
Computer Architecture (HPCA '26) ﬂ’? @

DSASSASSIN: Cross-VM Side-Channel Attacks
by Exploiting Intel Data Streaming Accelerator

Ben Chen', Kunlin Li', Shuwen Deng?, Dongsheng Wang?, Yun Chen'”

' The Hong Kong University of Science and Technology (Guangzhou)

2 Tsinghua University
\\\\\\\‘
’. ’am \ [=R7
N 9E7 \ <
(/ Q 7

g HEERBERZE (M)
= THE HONG KONG
LlNJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU) Tsinghua University

February 4, 2026

Data Movement

offload
memcpy

gl
it -
o0

Data centers tax for moving data between buffers
* Dedicated accelerator to save CPU cycles and boost throughput

More devices potentially brings wider attack surfaces
= Example: IOTLB side channels DevlOus [S&P‘23] and GPU TLBs [CCS'23]

February 4, 2026

Intel Data Streaming Accelerator (DSA)

e Introduced in Intel Xeon 4t Gen Scalable and later

* Treated as device w/ Intel VT-d I/O virtualization

* Accelerates data operations such as memcpy, memset, and memcmp

* Introduces asynchronous semantics, saving CPU cycles

2
CPU Socket A

Ve 1

S

Tile Tile Tile - 7]

Tile || Tile || Tile DSA [5]
A \\AL\ i

PCle L

February 4, 2026

1
P DSA Internal !
s/ ! !
: 1
! Engines L
! Work Queues Engne0 ___——— !
! (Hardware Queue) = i
! »| Batch fetcher . H
!) & buffer =) Processing i
1 = 5 !
H RS Unit 1
1 P - !
H Work descriptor i
1
! ~] =<
: “ee ‘I - i m
i > Engine 3 ! B
T —1i| g
: 1 1] | : —
! Enqueue Fetch translation Memory Transaction ! <
1
; v 0 v O N
! | ATC /DevTLB Memory Read/Write)
~ 1 1
e T 0--------------------4 ______________________ I._____________'
Process
Descriptors from CPU Address translation Memory Request =) Space
1 1
K 2
Page Table Walk
PCI express TA < >

Pipeline

Read

Write

1] O 1]
| E :
2 &

DSA Descriptor

= Descriptor is DSA’s instruction
* 64 bytes in total (long enough)
= encodes all necessary information

» does not expose internal states

= Completion record tracks DSA final
states, e.g. completed or aborted

February 4, 2026

56 48 40 32 24 16 8

0 Bytes

Opcode Flags P| Reserved PASID

Completion Record Address

Source Address (src)

16

Destination Address (dst) / Source2 Address (src2)

24

Reserved Interrupt Handle Transfer Size

32

Destination2 Address (dst2)

40

Reserved

48

Unused

56

Fig: Descriptor format

56 48 40 32 24 16 8

0 Bytes

Bytes Completed Unused Result

Status

0

Fault Address

8

Reserved

16

Unused

24

Fig: Completion record format

DSA Workflow

User writes descriptor to portal

engine

Issues memory requests via PA

February 4, 2026

Portal enqueues and dispatches to

Engine fetches address translation

notifies user by writing
completion record

1

I

DSA Internal :

I

i

Engines H

Work Queues Engine 0 i
(Hardware Queue) i
I

> Batc}{) fef:;cher NI .]

() & buffer = N Processing I

g Unit i

: 4 i

Work descriptor I

i

#I Engine 3 | !

1T ; : :
1 | 1 1 1

1

Enqueue Fetch translation Memory Transaction !
3 1) i

s 4 v v 4 :

I ATC /DevTLB Memory Read/Write I i
i

]

Descriptors from CPU Address translation Memory Request =
' :
Page Table Walk
PCI express TA <

ATOWAIN

Process
Space

A 4

B

DSA Workflow

= [OMMU => TA (Intel VT-d)
» Offload translation requests

» Directly use PA

= [/O VA => Process VA

= Same VA space

» Needless to allocate IOVA
= PASID to walk process’s page

table

February 4, 2026

Enqueue Fetch translation

y O 4

Memory Transaction

vy 0 .

1

I

DSA Internal :

I

i

Engines i

i

Work Queues Engine 0 I
(Hardware Queue) 1
> Batch fetcher NI i

P & buffer g || Processing i

T Unit 1

> - i

Work descriptor I

i

e N - 1

g/ Engine 3 | !

1T ; : =
1 | 1

1

I

i

1

I

i

I

]

i

]

|

ATC /DevTLB

Memory Read/Write I

Descriptors from CPU Address translation Memory Request =
' :
Page Table Walk
PCI express TA <

ATOWAIN

Process
Space

A 4

B

Micro-arch Side-Channels

Speculative
Attacks

CPU
Attacks

Un-core
Attacks

February 4, 2026

(= Spectre

PHT, BTB, RSB, etc.

Meltdown

RIDL, ZombielLoad etc.

uarch Optimizations

= Prefetcher, predictor (LAP/LVP)

Caches

LLC, weak coherence

Port contention (e.g. ALU)

Bus contention
Buffer (e.g. ROB, scheduler)

Interconnects

PCle, NoC, IOTLB etc.

Devices uarch

GPU, NPU, NIC etc.
This work

v/ Proactive-triggered

V" Low noise

¥ Single-core

¥ Need cache or other primitives

v/ Non-speculative

v Stealthy and hard to patch

¥ Higher noise

¥ Single-core (or required SMT co-location)

v/ Cross-VM

v~ Low noise

Y Passive-triggered

¥ Required high-accurate timer (mostly)

DSA Is Meant To Be Shared

Architecturally isolates processes
via PASID

* TA only walks tenant’s memory
space

« SWQ synchronizes descriptor
submissions

Enables DSA to share seamlessly

But, is it safe from side-channels?

Can we attack its microarchitecture,
e.g. DevTLB and SWQ?

February 4, 2026

i 1
I
E DSA Internal :
! I
i
i Engines !
H Work Queues Engine 0 i
! (Hardware Queue) 1
I p| Batch fetcher N !
H & buffer = N Processing i
1 = Unit i
: ; = 1
H Work descriptor i
! i
! i
i
i ?I Engine 3 !
- S 3 5 5 !
- i 1 j J i
i
E Enqueue Fetch translation Memory Transaction !
i
! 3—0— v 0 .]
] | arc/pevite || [Memory Read/write :
i
. [YR SSI——_" SSS—— W

Descriptors from CPU Address translation Memory Request ==

' :
Page Table Walk
PCI express TA ¢

ATOWAN

Process
Space

LI

Methodology

* PMU: Perfmon for DSA, supported by Linux perf tool

Event Name Category Event No. Description

EV_ATC_ALLOC 0x2 0x40 Number of requests to DevTLB

Number of requests not allocated
DevTLB entry

EV_ATC_HIT_PREV O0x2 0x100 Number of DevTLB hits

EV_ATC_NO_ALLOC O0x2 0x80

* Timer: rdtsc, to benchmark the completion latency
 Primitives used to benchmark DevTLB and SWQ

* noop: write to completion record at addr

« memcmp: compare two regions from src and src2
* memcpy: copy src to dst

« dualcast: copy srctodst and dst2

February 4, 2026

DevTLB Index Policy

// base is 4KB aligned
probe_noop(base);
probe_noop(base + OFFSET);
// probe if base is present
probe_noop(base); // miss

// different pages

assert(PAGE_OF(src0) !'= PAGE_OF(dst0));
assert(PAGE_OF(src@) != PAGE_OF(srcl));
probe_memcpy(src@, dst0);
probe_memcpy(srcl, dst®); // 1 hit: src

// src2 == dst
probe_memcmp(src, src2);
probe_memcpy(src, dst); // 1 hit: src

February 4, 2026

Preliminary: check page boundary
 Not surprisingly 4KB

Assume set-associativity

Immediately evicts base. Weird!

What if it’s not indexed by VA bits?

Three addresses on different pages
Entry of dst0 hits, so src is untouched
Another entry found!

What if same address is placed at
different fields in descriptor?
Hit! So DevTLB is indexed by fields

Benchmark DevTLB Latency

void* base = malloc(); base[0] = 0; probe_noop(base); // warm up

for (int 1 = 03 1 < ITERATION; i++) {
hit[cnt] = time(probe_noop(base)); // record hit latencies
miss[cnt++] = time(probe_noop(base + OFFSET)); // miss latencies

}

00 T e * Poll for completion
. * DevTLB hit/ miss latency is distinguishable
9 200 . . :
o with the unprivileged timer rdtsc
. * ~500 cycles variation

* We can do side-channel
0

250 500 750 1000
Latency (cycles)

February 4, 2026

DevTLB Index & Replacement

 Two isolated processes:
» attacker casts Prime+Probe

* victim submits descriptor during
attacker’s waiting

* Three configurations
1. same WQ), same engine
2. different WQs, same engine
3. both are separate

February 4, 2026

Time 1 |
Time 2 |
Time 3 |

- Victim Attacker
// wait prime(&base);
submit(&desc); sleep(N_SECS);
// wait probe(&base);
® .
- WQ0 —> Engine 0
P — WQO Engine 0
&—) WQO > Engine 0
____) WQ1 [---9 Engine 1

DevTLB Attack

PC|void* base = malloc(); base[0] =

= First step: attacker primes

m)| probe_noop(base); // attacker .
submit(&wq, &desc); // victim some entries
time(probe_noop(base)); // attacker

Engine ID
1
| DevTLB of Engine 0 i AN
I | et Bl il T-—-—---------—-p---- T-—=—=—=—--- =
Field! VATag 5 PASID : PT Result ' PS . Valid i
, T mmmmmEmTmTTOTmOmTmTmTmTOTeTmTmTTeTommmmEmmmmEmATmMTT T
i Src Oxfdeadbeef stale 0x000012 1 0 i_,
i dst 0xff01dadd5 stale 0x000034 1 0 I 2
i | cr— PCI express to memory
| |
i comp Oxfdeadbeef attacker 0x00c0Ode 1 1 i (——\
e____ _ - - |
O
. \ TA PS: Page Size
DevTLB of Engine N g PT: Page Translation

February 4, 2026

DevTLB Attack

PC|void* base = malloc(); base[0] =

probe_noop(base);
m)| submit(&wq, &desc);
time(probe_noop(base)); // attacker

// attacker
// victim

Field: VATag : PASID PT Result PS Valid
victim 0x00addo 1 1

dst Oxff01daf12 victim 0x00af10 1 1

comp Oxfdeadbeef victim 0x00b100 1 1

|
|
|
|
i
|
i src | Oxffoldadd2
|
|
|
|
|
|
|
|
|

DevTLB of Engine N

Engine ID

//1

Wait for victim to evict the
entries in DevTLB

No PASID to protect the
entries, so E, and E; succeed

\ 4

PCI express to memory

February 4, 2026

TA

DevTLB Attack

PC|void* base = malloc(); base[0] =

probe_noop(base);
submit(&wq, &desc);

// attacker
// victim

=) time(probe_noop(base)); // attacker

Field: VATag : PASID PT Result PS Valid
src 0xff01dadd2 victim 0x00addO 1 1
dst OxffO1daf12 victim 0x00af10 1 1

comp Oxfdeadbeef attacker 0x00cOde 1 1

DevTLB of Engine N

@ :

Engine ID

//1

Time the access
Longer means the entry was
evicted => victim’s behavior

\ 4

PCI express to memory

February 4, 2026

TA

DevTLB Attack

= Engine exclusive: E, failed to

PC vouti)* base : malloc(); base[gi =k evict because engine ID split
probe_noop(base); // attacker the entries and the translation
submit(&wq, &desc); // victim hed i h .

m)| time(probe_noop(base)); // attacker was cached ih ahother entry

Engine ID
1
| DevTLB of Engine 0 i AN
| |l iy El il b e il il T—=—=—====- ol
Field! VATag 5 PASID : PT Result -Psi Valid ||
\, T T T TmmTmmmmEmmmmEmmTImITTTT T
| src | Oxff01dadd? victim 0x00add0 | 1 1|
i dst Oxff01daf12 victim 0x00af10 1 1 i 2
| | cr— PCI express to memory
| T
i comp Oxfdeadbeef victim 0x00b100 1 1 i
e_____ _ _ _ - - MY |
. 4 | TA
DevTLB of Engine N >

February 4, 2026

Shared Work Queue

* Benchmarking submission (enqueue) and completion latencies
= Completion latency is linear with respect to data transfer size (predictable)
= Submission is constant-time

226 -
—8— Submission
2241 g~ Completion
922 Async Submission
/'(5 220
Q£
g\ 218
S
(o) 216
£
= 214
212
210
——C— O« @ .-—d._-—.—'-—'——a-—‘-‘—._’-\
13 15 17 19 21 23 25 27 29
2 2 2 2 2 2 2 2 2

Transfer Size (bytes)
February 4, 2026

SWQ Portal

» Deferable Memory Write (DMWr) is non-posted, waiting for feedback
* Indicates the submission status by setting the bit ZF
» SWQ checks size with configured capacity

» Architecturally visible SWQ status

» Enables timer-less side-channel: Congest + Probe

void congest() {
engcmd(wqg, &mass_desc);
for (1 = 0; 1 < SIZE; i++)
engcmd(wqg, &desc[i]);
}

bool probe() {
return enqgcmd(wq, &desc);
}

WP

EFLAGS

/F 0

February 4, 2026

WQ Reg

Head Size

Hardware
Work Queue

MMIO
Portal

@

Config Reg

Capacity

16

DSA uArch Takeaway

» DevTLB is indexed by field types (5 entries) and engine 1Ds
= SWQ exposes architectural state and exhibits constant-time behavior

= Neither of them is PASID-partitioned

February 4, 2026

Portal

lcheck

1

| I
! Work Queues | Engine 0
I (Hardware Queue) |
: | > Batch fetcher o
: | & buffer = Processing
— I 5 Unit

I
v I Work descriptor

Virtual |

boundary : l Biygfine &

Attack Primitives

c Step: Prime (DevTLB) / Congest (SWQ)
(&3 Attacker P 5

probe_noop(base); // prime DevTLB
for (int 1 = 0; 1 < WQ_SIZE; i++)
submit(&swq®, &desc); // congest SWQ

_\
|
|
1|7 ||=
| <5
|
L_:_
1
1
1
1
:
1
1
=
(@)
-
o_
TA
i
L
¥
@)
=
Q9
wn
<
@)

@)
=
o
=
=
o,
O
=
®
=
=}
o
@)
wm
T

9 Step: Leakage via access to DSA

& Victim

\ TR
I
I

/] ...
bit = submit(&swq0, &desc);
/] ...

——————
| VM1 : : DSA '
S T S N e N e

J[1, } Engine 0

1--}-4-» SWQ —>| Engine 1

7
;
.:c
O
o
=8
o
=
I—
I
]
1

e Step: Probe the DevTLB / SWQ
Attacker

bit time(probe_noop(base)) > threshold;
bit submit(&swq0, &desc);

February 4, 2026

— e — —

= |solation: attackers and victims run on
different VM and cannot cross boundary

= Co-location: mapped to same engine (red
path) or same SWQ (teal path)

= Target: DSA applications, e.g. DPDK, DTO
(DSA Transparent Offload library)

DSASSASSIN: Setup & Attacks

We launched four attacks to showcase the primitives, DSApq, 115 & DSAswq

?Covert Channel] ?Website Fingerprinting] ?SSH Keystroke] ?LLM Fingerprinting]

Both DSApevTiB Both DSApeTLB

Specification Local Cloud

Provider Self-hosted Alibaba Cloud

Processor Xeon Platinum 8468V Xeon Platinum 8475B
Architecture Sapphire Rapids (4t Gen Xeon Scalable)

OS Ubuntu 24.04 LTS
VMM KVM
/O Virtualization Intel Scalable IOV Single-Root IOV

DSA Instance DSA (v1.0) * 2 DSA (v1.0) * 6

February 4, 2026

DSASSASSIN: Covert Channel

* A preliminary test to see how fast we can leak

* Victim deliberately sends message to the
attacker under VM isolation

e Protocol:

 eviction or submission means bit ‘1’; otherwise ‘0’
* synchronization by emitting consecutive bit ‘1’s

e Performance:

» DevTLB (top fig.): 17.19 Kbps true cap, 4.63% BER
« SWQ (bottom fig.): 4.02 Kbps true cap, 13.11% BER
* True capacity larger than IOTLB attacks

February 4, 2026

True Capacity (kbps)

True Capacity (kbps)

0.4

F0.3

F0.2

] \ -0.1
/ ~o I/
‘\’\v/ K

10 20 30
Raw Capacity (kbps)

F0.25

0.20

0.15

0 5 10 15

Raw Capacity (kbps)

20

Error Rate

Error Rate

DSASSASSIN: Website Fingerprinting

» User-space network stack VPP upon DPDK

= VPP memory interface (memif) accelerates VM networking
» Example: Calico VPP on Kubernetes

* memif supports DSA acceleration for memory copying

» We can spy on this

I_ __________
Host @\\W | M1 |
— I

2 |l -| memif e | | memif |
S memif |
S |- 1 |

« A DSA socket | DSA
£ E | == '
» & — 7 HW Moving ¢ 7~ / |
::02 | spy// |
«— Host o |_F I
- Applicati |
—» App(s) | \iM_z_ﬂ : pplication(s) I
__________ .|

February 4, 2026

DSASSASSIN: Website Fingerprinting

EERN 00 00 00 00 00 00 00 00 00 00 01 00 0.0 00

» DevTLB miss => packet transmission 163
alipay 1

* Example: unique network fingerprints iy o
when accessing 3 websites apple] 00 00

baidu4 0.0 04 0.0 0.0

» LSTM model to classify 15 websites i

29 01 01 00 00 02 02 06 00 02 0.0

0.0

00 00 00 00 00 00 00 00 00 00 0.0

0.0
0.0 00 04 03 25 00 05 01 00 0.0 40
00 00 00 03 00 03 00 0.0 00

0.4 15 00 03 00 07 00 06 00

° O/ -
on Chrome 138.0: 96.5% accuracy = g cmafoo 07 oo 15 03 09 00 02 53
(¢+]
o = douban{00 00 00 08 00 0.1 06 00 00
= Top 100: 87.6% 3
Op y : 0 accuracy = iqiyi{ 00 0.0 00 03 00 00 00 00 00
€0 microsoft{ 0.0 0.1 0.0 01 04 04 00 00 00
—— baidu.com
» notion{ 0.0 0.1 00 21 08 00 00 02 57
R apple.com
540- —— microsoft.com taobao{ 03 00 00 01 00 01 00 00 01 00 00
]
S ‘ weibo{ 00 00 00 00 00 00 00 00 00 00 00
O 20 1
o ‘f \“ zhihu{ 00 00 00 00 03 27 00 00 00 00 00
‘ 1
0 = A" WV . — zoom4{ 00 00 00 02 00 00 27 00 00 00 21

Time Slot NS
Fig. Example traces Ny SEE o
Predicted Label
February 4, 2026

DSASSASSIN: SSH Keystroke

* Victim’s SSH client sends packets upon key pressed
* buffer copying involved => DTO acceleration

» Attacker can try to learn the exact timing of victim’s keystrokes

Contention

* Periodically priming DevTLB or congesting SWQ

* Shouldn’t miss any keystrokes (F; score) or deviate too much (std)

» DevTLB: 92.0%, 5.29 ms; SWQ: 98.4%, 1.21 ms

17 Traces
S rlo o t connection
closed
0) T T T T T T T T T
0 250 500 750 1000 1250 1500 1750 2000
Time Slot

February 4, 2026

»
2

ycC

<

Latency

1500 1

1250 1

1000 -

750 1

500 -

250 -

0

2500

5000

7500 10000 12500 15000 17500 20000
Time Slot

DSASSASSIN: LLM Fingerprinting

* Lots of data movement in CPU-only
and CPU-GPU inference, e.g. weights
and activation values

* May need DSA to accelerate
» Example: LILo [HPCA'26] applies
Intel IAA, DSA’s sibling

» Side-channel traces to classify the
model’s architecture

* We can achieve 98.6% accuracy on
these 8 models

February 4, 2026

Table. Tested models

Model Parameters Description

TinyStories 15M/42M/110M Tiny model in LLaMA 2
Meta LLaMA 2 7B Official LLaMA 2
Gemma 3 1B/4B Model on single GPU
Qwen3 1.7B/4B Dense and MoE model

DevTLB Miss

[*N
(=
1

4+
=)
1

N
(=)
1

0

TinyStories 15M
TinyStories 42M
TinyStories 1T10M

.rn !
“J “Mﬂ-' Y L{dh“i P | (A by | ELM./.J.J,\#&‘ b

0

100

200 300
Time Slot

400

(a) TinyStories 15M/42M/110M

DevTLB Miss

300 4

N

S

=)
1

-l
)
=
o
1

Gemma 3
1 Qwen 3

0

200 300 400

Time Slot

100

(b) Gemma 3 and Qwen 3 (4B)

Noise Analysis

= Redo latency benchmarks on multiple setups
= Virtualization and PCle stress
» Clear impact but still distinguishable

= Attack performance remains
= Noises outside DSA may not affect the
attack effectiveness

Noisy Local Cloud Noisy Cloud Local + CI

ccr 16.81 /4.73% 16.97 / 4.69% 16.52/5.13% 17.19 £ 0.78
cet 4.08/1291% 3.96/133% 3.80/13.9% 4.02 &+ 0.44
WF 86.0% 85.5% 85.1% 85.7 &+ 2.8%
SSHK'* 90.5% /541 93.4% /539 93.0%/5.35 529 + 0.14
SSHK?* 982% /125 99.1% /127 989% /128 1.21 &+ 0.09
LLMC 98.6% 97.7% 98.0% 98.6 =+ 1.0%

! DSApeytLB. 2 DSAswq.
T format: true capacity (kbps) / bit error rate. CI is in terms of capacity.
* format: F; score / standard deviation (ms). CI is in terms of std.

February 4, 2026

Frequency

Frequency

300 1 DevTLB Hit
DevTLB Miss

200

100 1

(0 s T T T
250 500 750 1000
Latency (cycles)
(a) Local

200 1 DevTLB Hit
DevTLB Miss

150 4

100 A1

50 1

500 1000
Latency (cycles)

(c) Cloud

1500

200 7

Frequency

50

0

200 1

—_
wn
—
c

Frequency

50 1

0

150 1

100 1

DevTLB Hit
DevILB Miss

250

500 750 1000
Latency (cycles)

(b) Local + Noise

100

DevILB Hit
DevTLB Miss

500 1000
Latency (cycles)

(d) Cloud + Noise

1500

Mitigation

0 Software Side-Channel Resistance e Enforcing PASID Isolation
e.g. Constant-time, data-oblivious execution e.g. DevTLB partition
Constantine [CCS’21]: 16% overhead Secure TLBs [ISCA'19]: 11.4% overhead
e B CPU DSA Mitigated B DTO Mitigated

w
(@)

Our software simulation of DSA’s
DevTLB partition via flushing

N
S

N
o

Up to 15.7% throughput overhead
- Still outperforms CPU’s memcpy

Throughput (GB/s)

(]

o

256B 16KB 64KB 256KB
Transfer Size

February 4, 2026

Conclusion

= We studied Intel DSA and reverse-engineered its microarchitecture
» DevTLB is indexed by field type and engine 1D, and
= mitigates address translation latency

= SWQ exposes a timer-less architectural status via DMWr transaction
* Both are NOT ISOLATED

» We proposed DSASSASSIN, new side-channel attack that
» bypasses IOMMU
= can cross VM boundary and is practical in cloud

* We demonstrated the threats by spying on DSA applications
= Fingerprinting (websites & LLM inference) / Keystroke / Covert Channel

February 4, 2026

Thanks for your attention!
Questions?

DSASsASSIN: Cross-VM Side-Channel Attacks by Exploiting Intel Data Streaming Accelerator
Ben Chen, Kunlin Li, Shuwen Deng, Dongsheng Wang and Yun Chen. HPCA ‘26.

High
Performance
Computer
Architecture

B FEREKRZET M)
T THE HONG KONG
LlNJ UNIVERSITY OF SCIENCE AND
TECHNOLOGY (GUANGZHOU)

Y

February 4, 2026

